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SUMMARY 

The flow of an incompressible fluid in a rapidly rotating right circular cylinder is considered. A 
sourceisink mass distribution at the lateral wall, which is azimuthally uniform and symmetric across the 
midplane, causes a deviation from wheel flow. The container is only partially full and the inner free 
surface is allowed to deviate slightly from the vertical. A finite-difference solution of the full 
axisymmetric, non-linear governing equations was used to obtain the flow field. A special implicit 
technique for the Coriolis terms which maintains geostrophy was developed and is described. The 
results obtained for a low Rossby number flow compare quite favourably with the linearized solution. 
Results are also presented for a case wherein the non-linear terms are important. 
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INTRODUCTION 

Source-sink flows in a rotating fluid have been considered by a number of authors including 
Lewellen,I Barcilon,’ Hide; and Wood and  sander^.^ Lewellen considered a vortex flow in 
which the fluid entered tangentially with high velocity, spiralled radially inward and exited 
axially at a smaller radius. Barcilon considered a rotating flow in which the fluid was injected 
from the sidewall at one height and azimuthal position and removed at a different height and 
azimuthal position. He found using matching techniques that the vertical transport is 
confined to a layer of thickness ( E  being the Ekman number, v/CK2) whereas the 
horizontal transport is through the interior of the fluid. Hide studied both theoretically and 
experimentally a number of cases involving coaxial cylinders with sources and sinks in the 
vertical walls. Wood and Sanders extended the Onsager ‘Pancake’ model to allow for the 
presence of sources and sinks of mass, momentum and energy within a rapidly rotating gas. 

Considered here is a case involving an incompressible liquid in an annular geometry. The 
inner surface is nearly vertical and completely free; mass injection and removal takes place 
through the outer permeable wall. A finite-difference solution of the axisymmetric governing 
equations is compared to the linearized asymptotic solution. A case involving a much higher 
mass injection rate, so that non-linear effects become important, is also investigated. 

PROBLEM FORMULATION 

The region of interest is shown in Figure 1. The right circular cylinder is only partially filled 
with liquid and is rotating fast enough that the liquid-air interface is nearly vertical. The 
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Figure 1. Computing region with finite-difference mesh overlaid 

prescribed mass flux through the sidewall is azimuthally uniform and symmetric across the 
rotor midplane and is given by u = - U cos nz lL .  The inner surface is a free (slip) surface and 
is allowed to deviate slightly from the vertical. The horizontal boundaries are no-slip 
surfaces, as is the sidewall. In Figure 1, the finite-difference mesh (discussed later) is shown 
covering the liquid-filled region. The axisymmetric governing equations are written as 
follows:5 

l a  dW - - (ru) +- = 0 
r ar az 
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The pressure which appears in these equations is the reduced pressure; that is, the actual 
pressure has been combined with the centrifugal acceleration term.6 

Gravity has been neglected; for the flows being considered here the ratio of centrifugal to 
gravitational acceleration is nearly 100. The inclusion of gravity would be trivial so long as 
the assumption that the deviation of the free surface from vertical is small is still valid. 

The solution of Equations (1)-(4) by finite-difference techniques is considered in the next 
section. 

NUMERICAL FORMULATION 

Initial solutions of this problem employing a technique similar to that used by Beardsley et 
d5 for much less rapidly rotating flows without a free surface exhibited a strong, slowly- 
damping mode of free-surface oscillation. Occasionally the computed flow would become 
unstable and break into Taylor-like vortices even though all apparent numerical stability 
requirements were satisfied. The technique to be presented here virtually eliminated the 
sloshing mode, eliminated all stability problems and gives an efficient transient or steady 
state solution for rapidly rotating axisymmetric flows. With one notable exception the 
primitive variable technique used here is similar to that used by Beardsley et aL5 for rotating 
flows and by numerous other authors for rotating and non-rotating flows.7 

The mesh system employed is shown in Figure 2 and the nodalization of the liquid-filled 
region is shown in Figure 1. Pressure (and when applicable any other state quantities) is 
defined at the centre of the primary control volumes. The control volumes for radial velocity 
and the vertical velocity are shifted a half grid space to the right and a half grid space 
upward, respectively. That is, these auxiliary volumes are centred on the edges of the 
primary control volume. For a fully three-dimensional flow, the control volume for the 
azimuthal velocity would normally be taken to be coincident with the primary (pressure) 
control volume and shifted a half-grid space into the paper. Instead, for reasons that will 
become apparent later, the control volume for azimuthal velocity is taken to be the same as 
that for the radial velocity. Although the program based on this formulation uses a 
non-uniform grid spacing in both directions with nodes concentrated near the ends and next 
to the sidewall, for ease of discussion the rest of this analysis will be based on a uniform 
mesh. Looking at the finite differencing in an abbreviated form at present and with 

I I 
r -- -- ----I 
I I 

Figure 2. Nodal volumes used for pressure and the three velocity components 
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superscripts indicating time levels, Equations (1)-(3) are differenced as follows: 

N i l  - 
2) i *J  = Convections- 2au;+l +Curvature;+ viscouss, (6) At  

N + l -  N N f l -  N f l  
Wi,j Wi,j - 1 ~ i , j  Pi,j+l 

- Convection; + - 
At Po LLz 

+ Viscous5 (7) 

The usual explicit methods, e.g. second central differences and conserving upwind differ- 
ences' are used for the viscous and convection terms, respectively. No attempt was made to 
mitigate numerical diffusion effects due to upwinding of the convection terms.' 

Since u, ,~  and q,] are evaluated at the same point, Equation (6) may be used to eliminate 
IJ;+' in equation (5) ,  leaving an equation containing only the variables and pE,,  at the 
advanced ( N +  1) time level. If the radial and azimuthal control volumes had not been taken 
to be coincident, then in the radial momentum equation, for instance, the term 2 a v  would 
be evaluated as fl(q+;,) + nvc-; , , )  as in Beardsley.5 The simple substitution used here would not 
have been possible. 

Requiring continuity to be satisfied at the new time level (and ignoring curvature effects 
only for purposes of this discussion), equation (4) in difference form becomes: 

uy:: Az - uE+' Az + WET: Ar - w F 1  Ar = 0 (8) 

Equation (5) ,  with eliminated by the substitution discussed, an analogous expression for 
uf"r,:, equation (7) for WE+' and an analogous expression for WE?: are substituted into 
equation (8) to obtain an equation involving pressure at the grid point and its four 
neighbours at the new time level. This Poisson equation for pressure is solved using cyclic 
reduction. '" 

The computational sequence then is as follows: 
1. 
2. 
3. 

4. 
5. 
6. 
7. 

Update explicit terms (convection, viscous, curvature) in equations (5)-(7). 
Substitute equation (6) into (5) and solve for u:+'. 
Substitute equation (7) and the modified equation (5) and their counterparts at wl,j-l 
and ZA-~,, into equation (8). 
Solve resulting Poisson equation for pressure. 
Update all velocities using new pressure field. 
Update all explicit boundary conditions. 
Repeat 1-6 until convergence. 

Note that by the simple expedient of defining identical control volumes for the radial and 
azimuthal velocities, it is possible in an axisymmetric flow to treat the Coriolis terms fully 
implicitly rather than explicitly as done by Beardsley et al.' and others." Also all terms in 
that subset of the full governing equations which describe inviscid inertial waves6 have been 
treated implicitly. Thus the present treatment of inertial waves is exactly analogous to the 
treatment of acoustic waves in the ICE (implicit continuous-fluid Eulerian) technique" for 
compressible and incompressible fluids. Analogous benefits in terms of allowable time step 
and absence of truncation error-induced waves may be expected. A recent paper by Hirt and 
Nichols13 discusses the treatment of acoustic waves in a simple one-dimensional geometry 
and shows conclusively the advantages of implicit over explicit treatment. 

Note that the technique described here is directly applicable only to axisymmetric flows. 
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Flows involving high enough angular frequencies that the time step restriction due to explicit 
treatment of the Coriolis terms is a problem would more than likely be axisymmetric 
anyway. Such flows arise, for instance, in centrifuges. 

One other, less important difference between the current treatment and that of Beardsley 
et aL5 involves the finite-differencing of the first viscous term in equation (2). The current 
analysis uses instead the form, 

which arises directly from first  principle^'^ and reduces, of course, to the form appearing in 
equation (2). In the form used here, the finite-difference approximation to the tangential 
shear stress is identically zero for the condition of wheel flow, as it should be. Further, the 
no-shear stress condition at the free inner boundary may be applied with no ambiguity. 

To complete the formulation, boundary conditions must be prescribed. At the lateral wall 
the radial velocity is prescribed for all time. For the row of nodes along the wall this known 
value is used instead of equation ( 5 )  for uZc1 in equation (8). Thus a four-point form of the 
Poisson equation is used at nodes adjacent to the sidewall. The no-slip condition for the axial 
velocity at this wall is enforced through simple reflection (with sign change) during the 
explicit update of the diffusion terms. The azimuthal velocity, which is defined at the wall 
rather than a half grid space off as is the vertical, is identically zero at the wall. 

Several options are available at the horizontal surfaces. For large enough Ekman number, 
the Ekman boundary layer may be resolved numerically. That is, the vertical mesh may be 
refined at the ends and the no-slip condition may be applied directly. This option would 
become more attractive were an explicit, unconditionally stable method such as the DuFort- 
Frankel method15 employed for diffusion terms. If the option of grid refinement and 
resolution is used, then the axial velocity, which is defined exactly at the wall, is identically 
zero. The no-slip condition for the radial and azimuthal velocities, which are defined a half 
space out from the horizontal walls, is applied through a simple reflection with sign change. 
For the flows considered in this paper the Ekman layers are such that an analytical ‘patch’ 
becomes more reasonable. That is, a boundary condition which has the equivalent effect on 
the main flow as a no-slip condition is used instead of the no-slip condition itself. In this case, 
the end boundary condition becomes one on axial velocity and is expressed in terms of the 
azimuthal velocity outside the Ekman layer:6 

and 

The Ekman flow has been evaluated explicitly, that is, wN+’ =f(vN). A fully implicit 
treatment of the Ekman suction flow would result in a Poisson equation for pressure which is 
not separable, since at the ends the axial flow would depend on a horizontal pressure 
gradient (the azimuthal flow being strongly coupled to the radial flow) rather than on a 
vertical pressure gradient as in the rest of the field. The non-separable equation would be 
somewhat more difficult to solve than the present separable one. The explicit treatment has 
been found to be adequate; for the case in question we expect from the linearized analysis 
that the Ekman flow will be inconsequential anyway. Because the program is also being used 
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for cases where the Ekman layers may be economically resolved, axial diffusion terms are 
retained. When using the analytical end conditions being applied here, a slip condition is 
applied at either end. 

To be more specific, consider the row of cells along the lower boundary. The lower face of 
this row of cells represents the outer edge of the Ekman layer. The axial flow through the 
lower edge is computed using equation (11) where the values of the azimuthal velocity 
appearing on the right hand side are the ‘interior’ values, which are defined a half grid space 
above the lower edge (Figure 2) .  These interior values of azimuthal velocity are computed in 
the normal way except that here and in the radial momentum equation (equation (1)) the 
shear stresses acting on the lower faces, which involve axial derivatives, are negated by 
applying a slip condition; the effect of the ‘no-slip’ condition having already been incorpo- 
rated through the compatibility equation (equation (11)). The use of equations (10) and (11) 
for the non-full cylinder itself creates a problem. In finite-differencing these equations we 
note that at all internal nodes the term coming from the right side of one cell is equal and 
opposite to the term coming from the left side of the node to its right and that the extra 
terms which do not cancel at the ends are zero anyway for the fully-filled cylinder with a 
no-slip outer wall. This cancellation ensures that at all times the mass going into the Ekman 
layer is identical to that leaving it. With the stress-free inner boundary employed here, the 
term-by-term cancellation at nodes away from the wall and the free surface still holds, the 
azimuthal velocity at the wall is still zero, but the term which comes from the left side of the 
node abutting the free surface is not zero. Recent work by Shadday16 and Greenspan17 on 
strongly rotating flows involving an inner free surface suggests that for such a case the basic 
Ekman layer structure is unaltered except to provide at the free surface an extra source of 
mass which in a completely-full cylinder would have been transported by an upwelling 
distributed through the inviscid interior from the radius of the free surface into the 
centreline. For our purposes here we cancel the (small) non-cancelling term in evaluating 
equations (10) and (ll), so that the mass into and out of each Ekman layer balances. In a 
future paper we will consider a flow in which the Ekman layers provide all the drive and for 
which both experimental data (LDV measurements) and finite-difference solutions which 
fully resolve the Ekman layer have recently become available.16 

The assumption that the deviation of the free surface from vertical is small, but non-zero, 
has been made. This allows a fairly simple, but adequate treatment of the inner boundary. 
Since the governing equations have been written in terms of the reduced pressure,6 then the 
dominant restoring force is approximately -prnominalf12q(z, t ) ,  where q is the small deviation 
of the free surface from the nominal vertical position. This restoring force may be incorpo- 
rated into the finite-difference radial force balances for the column of half-cells along the 
free boundary in either of two ways. It may be used either as a ‘body force’ with the 
condition that p = 0 at the nominal position retained, or the pressure at the nominal position 
may be adjusted to a non-zero value reflecting this force. The former was in fact done. 
Velocities were also reflected to satisfy the no-stress condition. In the case of the azimuthal 
velocity the appropriate prescription for reflection comes from equation (9), that is T* = 

avlr 
r -  = 0, or vlr = constant. 

ar 
All dimensions of the free surface cells as they appear in facial areas, volumes etc., were 

held constant. For stability reasons the restoring force must be evaluated partially at the 
advanced time level. Noting that the radial velocity of the free surface; that is, dq/at, is 
identical to the normal velocity of the fluid at the edge nodes, such an implicit treatment 
becomes straightforward. In short, the cells along the free surface are treated in a similar 
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fashion to the interior cells, except that they are half-sized, have zero shear stress on the 
inner face, and have the implicitly treated restoring force. The present treatment does allow 
surface waves. The computed free surface velocities are typically three to five orders of 
magnitude less than the mass influx velocity and are decaying with time. 

With the usual explicit treatment of the Coriolis terms and with the parameters used in the 
first of the two cases to be discussed, the most limiting time step restriction is given by 
Atsl /2R.5 Instead, with the fully implicit treatment of the Coriolis terms used here, the 
above time step restriction no longer applies, and the most restrictive limitation comes from 
the fully explicit treatment of the diffusion terms. With the parameters chosen, the time step 
was about 0.01 s. In the second calculational example, where non-linear effects are impor- 
tant, the maximum allowable time step is1' 

At<min - - 
which is nearly an order of magnitude smaller. 

RESULTS 

Two cases are discussed in this study; a low Rossby number flow for which the computed 
results may be compared to an available linearized solution and a higher Rossby number, 
non-linear case. Some of the parameters used in this study come from an ongoing, related 
project in which a non-wheel flow component is driven in a partially-Bled rotor by a 
differentially-rotating lid.'6 These parameters include the rotor dimensions (length = 0.20 m, 
radius = 0.10 m), the fill ratio (=0.30 by volume), the fluid (water, v = m2/s) and the 
rotor speed (= 1000 revlmin, R = 105 s-'). No experimental work involving the source-sink 
flow studied herein is currently ongoing, hence the flow through the sidewall was chosen as 
U = 0.0001 cos TZ/L m/s for the first case, and a value 1000 times larger was used for the 
second case. f i e  shape was picked to simplify the linearized analysis. With these parameters 
E = v/RL2 = 2.38 x lo-' and the Rossby number (= U/RL) based on the amplitude of the 
injected sidewall flow was 4.7 X lo-" for the first case and 4.7 X for the second case. It 
will be shown later that actual velocities internal to the flow are very much larger than the 
scaling velocity used. 

ANALYTICAL SOLUTION 

A solution of this problem using linear theory has been given by Greenspan.lg According to 
linear theory the transport is accomplished entirely by a recirculating flow within the sidewall 
boundary layer. The rigid rotation of the main body of fluid is undisturbed. 

Let the cylinder of height L, and radius a, rotate with angular velocity R. Assume that at 
the sidewall, the normal (radial) velocity is prescribed by 

u=-ucosTz/L 

so that there is a mass flux into the cylinder below z = L/2 and an efflux above. All other 
boundary conditions are as described earlier; i.e. the horizontal surfaces are no-slip, the 
sidewall is no-slip and the inner boundary is stress-free. 

With y = ( ~ T / E ) " ~  and x = a - r, an asymptotic analysis,6 yields the following for the axial 
and azimuthal velocity components: 

I? = A (x) sin ( m / L )  
6 = A (x) cos (TZ/L)  
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where 

Both components are large, i.e. Order (E-'/3U) or about 160 U in this case, and alternate in 
direction from the wall. 

The above expression for axial velocity was evaluated for each node on the finite 
difference mesh and the resulting velocity field was integrated to obtain the streamfield. The 
result is presented in Figure 3. The radial co-ordinate has been expanded by a factor of 10 
and streamlines are plotted in increments of 10 per cent of the total flow injected through 
the sidewall. The left edge of the plot is the free surface, not the rotor centreline. The 
sinusoidal dependence of axial velocity on distance from the wall is evidenced by the 
counter-rotating cells to the left of the dividing streamline. It can be seen that the flow in the 
left two-thirds of the region was low enough that no non-zero streamlines were found 
although increasingly weaker cells are in fact there. In Figure 4, contours of constant 

Figure 3. Streamlines computed from Greenspan's linearized solution. Streamline increment is 10 per cent of the 
inflow through the sidewall. In this plot and all succeeding plots the horizontal co-ordinate has been expanded by a 

factor of 10 and the left edge is the free surface. E = 2.38 X 
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Figure 4. Contours of constant azimuthal velocity for flow of Figure 3. The contour interval is 10 per cent of the 
difference between the maximum and minimum values. (urn= = --umIn = 51 x U )  

azimuthal velocity have been plotted. The flow entering in the lower half immediately gains 
angular velocity; that leaving has a deficit which must be eliminated before exiting. With the 
negative exponential dependence on distance from the wall, only zero contours are found in 
most of the flow. In the linear solution the maximum azimuthal velocity was found to be 51 
times the maximum inflow velocity. 

NUMERICAL SOLUTION 

The steady state flow field obtained using the transient finite-difference technique discussed 
earlier with the lower value of the inflow velocity ( U  = 0.0001 cos m / L  mls) is shown in 
Figures 5 and 6. A 20 x 31 mesh (Figure 1) was employed. The streamlines shown in Figure 
5 were obtained by integrating the computed vertical velocity components. As in Figure 3 
the streamline increment is 10 per cent of the inflow through the sidewall and the horizontal 
co-ordinate has been expanded by a factor of 10. Again the left edge of the plot is the free 
surface, not the rotor centreline. With wheel flow initial conditions, the sidewall flow was 
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Figure 5. Streamlines computed using finite-difference method for low Rossby number case. Streamline increment 
is 10 per cent of the inflow through the sidewall. E = 2.38 x Ro = 4.7 X 

ramped up to its final value in one second (-17 revolutions). The calculation was considered 
converged when at a time of 7.3 s the largest change in pressure at any grid point between 
successive timesteps normalized by the largest pressure in the field was less than 0.005 per 
cent. (For the parameters used in this study, this time is the same order as the spin-up time 
scale.) The flow to the right of the dividing streamline reached virtually its final distribution 
almost at the end of the one-second ramp. Weak secondary cells grew and decayed during 
the rest of the transient. Very weak free surface oscillations still existed at the end of the run; 
the final deviation of the free surface from the vertical is infinitesimal (order 10-9m). In 
general, agreement between the linearized and numerical solutions is seen to be quite good. 
Slight differences in the position of the series of zero streamlines to the left is certainly 
expected given the coarseness of the finite-difference mesh used there and the very small 
magnitude of the flow there. In some cases, only one or possibly two grid points span an 
entire cell. The evaluation of the linearized solution was also made on the same mesh, so in 
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Figure 6. Contours of constant. azimuthal velocity for flow of Figure 5. Contour interval is 10 per cent of the 
difference between the maximum and minimum values (qnU = 48 X U )  

fact, both solutions are suspect. The negligibility of the non-linear terms for these parameters 
is surely confirmed. 

In Figure 6 contours of constant azimuthal velocity have been plotted. Other than the zero 
values in the third of the flow near the free surface, the agreement between Figure 4 and 
Figure 6 is quite close. The maximum azimuthal velocity was found to be 48 times the 
amplitude of the sidewall inflow, a ratio very close to that determined from Greenspan’s 
solution. Total computer time for this case was 590 s on a CDC Cyber 730. 

With the inflow velocity raised by a factor of 1000; i.e. U = 0.1 cos vz /L  m/s, the character 
of the flow is markedly different. Figures 7 and 8 show the computed streamlines and lines of 
constant azimuthal velocity for this non-linear case. Again the flow was ramped in over a 
period of one second, and the calculation was terminated at 1-7 s when the largest change in 
pressure at any grid point between successive timesteps normalized by the highest pressure in 
the flow was less than 0-05 per cent. Using equation (12) as a criterion, the allowable 
timestep was reduced from that used in the nearly-linear case by a factor of about 10. At 
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Figure 7. Streamlines computed using finite-difference method for higher Rossby number case. Streamline incre- 
ment is 10 per cent of the inflow through the sidewall. E = 2.38 x lo-’, Ro = 4.7 X 

convergence only the zero streamline and the zero contour of azimuthal velocity were still 
meandering slightly. The flow is no longer symmetric top-to-bottom and the well-ordered 
secondary structure is gone. The strong wall inflow penetrates much farther into the flow. 
The maximum azimuthal velocity in this case was about 17 times the inflow amplitude 
against 48 for the nearly-linear case. 

CONCLUSIONS 

A finite-difference scheme which is applicable to strongly rotating, axisymmetric, incompres- 
sible flows has been described. The very strong coupling between the horizontal velocity 
components has been implicitly treated in the algorithm. A simple treatment has been used 
for the nearly-vertical free surface. Good agreement between an available asymptotic 
solution and the computed results for a low Rossby number case has been shown. The 
robustness of the algorithm at higher Rossby numbers where non-linear effects become 
important has also been demonstrated. 
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Figure 8. Contours of constant azimuthal velocity corresponding to flow shown in Figure 7. Contour interval is 10 
per cent of the difference between the maximum and minimum values (urn= = 17 V) 
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